
Universelles Koppel – Element UKE 21b

Universell:

ersetzt fast alle am Markt befindlichen Koppelelemente (elektronische Relais) – ein wichtiger Vorteil für Lagerhaltung und Service.

Universalausgang für Logiksignale bis hin zu max. 1,8 A im 230 V Wechselspannungsnetz (oder 3,6 A DC) -Ausführungen für höhere Spannungen und Ströme sind verfügbar.

Eingangsspannungen von 12 V DC/AC bis zu 230 V AC sind einfach durch Umklemmen einzustellen.

Dynamische Hysterese:

Die patentierte Schaltung ermöglicht es, auch bei Wechselspannung trotz kürzestmöglicher Schaltzeiten ein "halbes Durchschalten" zuverlässig zu verhindern und eine optimale Unempfindlichkeit gegenüber Stör-Spannungsimpulsen sicherzustellen. Eine spezielle patentierte Lösung erlaubt es, mit nur 4 Eingangsklemmen 5 verschiedene Eingangsschaltpegel zu wählen. Die Umschaltung zwischen Wechsel- und Gleichspannung erfolgt automatisch.

Optimiertes Schaltverhalten:

Durch ein relativ langsames Durchschalten (im 100 µs – Bereich) sind die Funkstörungen beim Schalten um Größenordnungen geringer als bei konventionellen Lösungen. Entstörschaltungen können daher eingespart werden.

Störungsunempfindlichkeit:

Das UKE bietet eine optimale Störungsunempfindlichkeit, wenn bei sehr langen Leitungen kapazitive elektrische Einstreuungen erfolgen.

Minimale Wärmeentwicklung:

- durch moderne MOSFETs mit geringen Restspannungen anstelle von Triacs oder Darlingtontransistoren.

Universelles Koppel – Element UKE 21b

Höchste Sicherheit:

Galvanische Trennung Optokoppler statt mit mittels speziellem hochspannungsfesten Schaltnetzteil- Transformator. Das Koppelelement wird aus Eingangssignal benötiat zusätzliche gespeist, also keine Versorgungsspannung. Dennoch ist eine visuelle Kontrolle des Schaltzustandes mittels LED vorgesehen.

Wirtschaftlichkeit:

Das intelligente universelle Koppelelement ermöglicht es in nahezu allen Anwendungsfällen durch seine überragenden technischen Eigenschaften – Störungsunterdrückung und Universalität – teure Arbeitszeit für Fehlersuche und im Beschaffungswesen einzusparen.

Eckdaten:

Eingang:

(typische Werte, Toleranz +/- 5 %)

Nennspannung / V _(eff)	12 DC	12 AC	24 DC	24 AC	48 DC	48 AC	115 AC	230 AC
Maximalspg. (Dauer) / V _(eff)	40	40	75	75	75	75	300	300
Einschaltschwelle / V _(eff)	8,9	8,3	16,6	16,9	29,7	30,3	77,5	165
Hysterese / V _(eff)	1,1	1,0	1,7	1,2	3,7	1,6	4,8	10,2
Eingangsstrom / mA _(eff)	2,5	4,0	2,0	3,4	4,5	7,4	1,9	3,8
Anschlussklemmen	A, B	A, B	A, C	A, C	A, C	A, C	A, D	A, D
Brücke	-	-	-	-	A-B	A-B	-	A-B

Einschaltverzögerung bei Nennspannung: typ. 3 ms Ausschaltverzögerung bei Nennspannung: typ. 15 ms

Max. Schaltfrequenz bei Nennspannung: typ. 60 Hz / min. 40 Hz

Ausgang:

(Bei -20 bis 60 ° C Umgebungstemperatur)

Laststrom AC (Klemmen E, F): 0 bis 1,8 A_{eff}
Laststrom DC (- an G, + an E mit F verbunden): 0 bis 3,6 A_{eff}

Spannung: $max. 400 V_{eff} / 600 V DC$

Betriebstemperaturbereich: -20 bis +60 ° C

Isolationsprüfspannung: 5,3 kV_{eff}

B&W TechComp – **Der ENERGY-DOC**: